By Topic

Measurement and modeling of on-chip transmission line effects in a 400 MHz microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Restle, P.J. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Jenkins, K.A. ; Deutsch, A. ; Cook, P.W.

On-chip interconnect delays are becoming an increasingly important factor for high-performance microprocessors. Consequently, critical on-chip wiring must be carefully optimized to reduce and control interconnect delays, and accurate interconnect modeling has become more important. This paper shows the importance of including transmission line effects in interconnect modeling of the on-chip clock distribution of a 400 MHz CMOS microprocessor. Measurements of clock waveforms on the microprocessor showing 30 ps skew were made using an electron beam prober. Waveforms from a test chip are also shown to demonstrate the importance of transmission line effects

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:33 ,  Issue: 4 )