By Topic

Digital circuit applications of resonant tunneling devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
P. Mazumder ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; S. Kulkarni ; M. Bhattacharya ; Jian Ping Sun
more authors

Many semiconductor quantum devices utilize a novel tunneling transport mechanism that allows picosecond device switching speeds. The negative differential resistance characteristic of these devices, achieved due to resonant tunneling, is also ideally suited for the design of highly compact, self-latching logic circuits. As a result, quantum device technology is a promising emerging alternative for high-performance very-large-scale-integration design. The bistable nature of the basic logic gates implemented using resonant tunneling devices has been utilized in the development of a gate-level pipelining technique, called nanopipelining, that significantly improves the throughput and speed of pipelined systems. The advent of multiple-peak resonant tunneling diodes provides a viable means for efficient design of multiple-valued circuits with decreased interconnect complexity and reduced device count as compared to multiple-valued circuits in conventional technologies. This paper details various circuit design accomplishments in the area of binary and multiple-valued logic using resonant tunneling diodes (RTD's) in conjunction with high-performance III-V devices such as heterojunction bipolar transistors (HBT's) and modulation doped field-effect transistors (MODFET's). New bistable logic families using RTD+HBT and RTD+MODFET gates are described that provide a single-gate, self-latching majority function in addition to basic NAND, NOR, and inverter gates

Published in:

Proceedings of the IEEE  (Volume:86 ,  Issue: 4 )