By Topic

Resonant tunneling diodes: models and properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Ping Sun ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; G. I. Haddad ; P. Mazumder ; J. N. Schulman

The resonant tunneling diode (RTD) has been widely studied because of its importance in the field of nanoelectronic science and technology and its potential applications in very high speed/functionality devices and circuits. Even though much progress has been made in this regard, additional work is needed to realize the full potential of RTD's. As research on RTD's continues, we will try in this tutorial review to provide the reader with an overall and succinct picture of where we stand in this exciting field or research and to address the following questions: What makes RTD's so attractive? To what extent can RTD's be modeled for design purposes? What are the required and achievable device properties in terms of digital logic applications? To address these issues, we review the device operational principles, various modeling approaches, and major device properties. Comparisons among the various RTD physical models and major features of RTD's, resonant interband tunneling diodes, and Esaki tunnel diodes are presented. The tutorial and analysis provided in this paper may help the reader in becoming familiar with current research efforts, as well as to examine the important aspects in further RTD developments and their circuit applications

Published in:

Proceedings of the IEEE  (Volume:86 ,  Issue: 4 )