By Topic

Antiextensive connected operators for image and sequence processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salembier, P. ; E.T.S.E.T.B., Univ. Politecnica de Catalunya, Barcelona, Spain ; Oliveras, A. ; Garrido, L.

This paper deals with a class of morphological operators called connected operators. These operators filter the signal by merging its flat zones. As a result, they do not create any new contours and are very attractive for filtering tasks where the contour information has to be preserved. This paper shows that connected operators work implicitly on a structured representation of the image made of flat zones. The max-tree is proposed as a suitable and efficient structure to deal with the processing steps involved in antiextensive connected operators. A formal definition of the various processing steps involved in the operator is proposed and, as a result, several lines of generalization are developed. First, the notion of connectivity and its definition are analyzed. Several modifications of the traditional approach are presented. They lead to connected operators that are able to deal with texture. They also allow the definition of connected operators with less leakage than the classical ones. Second, a set of simplification criteria are proposed and discussed. They lead to simplicity-, entropy-, and motion-oriented operators. The problem of using a nonincreasing criterion is analyzed. Its solution is formulated as an optimization problem that can be very efficiently solved by a Viterbi (1979) algorithm. Finally, several implementation issues are discussed showing that these operators can be very efficiently implemented

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 4 )