By Topic

ECO Optimization Using Metal-Configurable Gate-Array Spare Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua-Yu Chang ; Grad. Inst. of Electron. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jiang, I.H.-R. ; Yao-Wen Chang

Due to the rapidly increasing design complexity in modern IC designs, metal-only engineering change order (ECO) becomes inevitable to achieve design closure with a low respin cost. Traditionally, preplaced redundant standard cells are regarded as spare cells. However, these cells are limited by predefined functionalities and locations, and they always consume leakage power despite their inputs being tied off. To overcome the inflexibility and power overhead, a new type of spare cells, called metal-configurable gate-array spare cells, are introduced. In this paper, we address a new ECO problem, which performs design changes using metal-configurable gate-array spare cells. We first study the properties of this new ECO problem and propose a new cost metric, aliveness, to model the capability of a spare gate array. Based on aliveness and routability, we then develop two ECO optimization frameworks, one for timing ECO and the other for functional ECO. Experimental results show that our approach delivers superior efficiency and effectiveness.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 11 )