By Topic

Time-Optimal Path Following for Robots With Convex–Concave Constraints Using Sequential Convex Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Frederik Debrouwere ; Dept. of Mech. Eng., KU Leuven, Heverlee, Belgium ; Wannes Van Loock ; Goele Pipeleers ; Quoc Tran Dinh
more authors

Time-optimal path following considers the problem of moving along a predetermined geometric path in minimum time. In the case of a robotic manipulator with simplified constraints, a convex reformulation of this optimal control problem has been derived previously. However, many applications in robotics feature constraints such as velocity-dependent torque constraints or torque rate constraints that destroy the convexity. The present paper proposes an efficient sequential convex programming (SCP) approach to solve the corresponding nonconvex optimal control problems by writing the nonconvex constraints as a difference of convex (DC) functions, resulting in convex-concave constraints. We consider seven practical applications that fit into the proposed framework even when mutually combined, illustrating the flexibility and practicality of the proposed framework. Furthermore, numerical simulations for some typical applications illustrate the fast convergence of the proposed method in only a few SCP iterations, confirming the efficiency of the proposed framework.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 6 )