Cart (Loading....) | Create Account
Close category search window
 

Lesion Detection and Characterization With Context Driven Approximation in Thoracic FDG PET-CT Images of NSCLC Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yang Song ; Multimedia Inf. Technol. (BMIT) Res. Group, Univ. of Sydney, Sydney, NSW, Australia ; Weidong Cai ; Heng Huang ; Xiaogang Wang
more authors

We present a lesion detection and characterization method for 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) images of the thorax in the evaluation of patients with primary nonsmall cell lung cancer (NSCLC) with regional nodal disease. Lesion detection can be difficult due to low contrast between lesions and normal anatomical structures. Lesion characterization is also challenging due to similar spatial characteristics between the lung tumors and abnormal lymph nodes. To tackle these problems, we propose a context driven approximation (CDA) method. There are two main components of our method. First, a sparse representation technique with region-level contexts was designed for lesion detection. To discriminate low-contrast data with sparse representation, we propose a reference consistency constraint and a spatial consistent constraint. Second, a multi-atlas technique with image-level contexts was designed to represent the spatial characteristics for lesion characterization. To accommodate inter-subject variation in a multi-atlas model, we propose an appearance constraint and a similarity constraint. The CDA method is effective with a simple feature set, and does not require parametric modeling of feature space separation. The experiments on a clinical FDG PET-CT dataset show promising performance improvement over the state-of-the-art.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:33 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.