By Topic

Time-Frequency Processing of Nonstationary Signals: Advanced TFD Design to Aid Diagnosis with Highlights from Medical Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boualem Boashash ; UQCCR, University of Queensland, Brisbane, Queensland, Australia ; Ghasem Azemi ; John M. O'Toole

This article presents a methodical approach for improving quadratic time-frequency distribution (QTFD) methods by designing adapted time-frequency (T-F) kernels for diagnosis applications with illustrations on three selected medical applications using the electroencephalogram (EEG), heart rate variability (HRV), and pathological speech signals. Manual and visual inspection of such nonstationary multicomponent signals is laborious especially for long recordings, requiring skilled interpreters with possible subjective judgments and errors. Automated assessment is therefore preferred for objective diagnosis by using T-F distributions (TFDs) to extract more information. This requires designing advanced high-resolution TFDs for automating classification and interpretation. As QTFD methods are general and their coverage is very broad, this article concentrates on methodologies using only a few selected medical problems studied by the authors.

Published in:

IEEE Signal Processing Magazine  (Volume:30 ,  Issue: 6 )