Cart (Loading....) | Create Account
Close category search window

Digital Nonlinear Compensation Based on the Modified Logarithmic Step Size

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Junwen Zhang ; Dept. of Commun. Sci. & Eng., Fudan Univ., Shanghai, China ; Xinying Li ; Ze Dong

In this paper, we investigate the digital backward propagation (DBP) nonlinear compensation (NLC) based on the modified logarithmic step size distribution. Different from regular constant step size, we use the logarithmic non-constant step size distribution in DBP. The compensation performance is investigated with Nyquist wavelength division multiplexing (NWDM) system. The modified logarithmic step size distribution is proposed and studied by introducing an attenuation adjusting factor k. As a proof of the concept, the optimal k factor is studied by simulation results with the noise figure, the input power, the transmission distance, the fiber attenuation, the span length, the step number per span, the dispersion value, the baud rate, the calculated sub-channels, the pulse shape and the modulation formats. Reduced complexity and improved performance is observed by using the modified logarithmic step size distribution. Compared with constant step nonlinear compensation, the improved bit-error-ratio (BER) performance and Q-value for our scheme is demonstrated by 3 × 50-Gb/s NWDM polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal with 1120-km single-mode fiber-28 (SMF-28) transmission and Erbium-doped fiber amplifier (EDFA)-only amplification.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 22 )

Date of Publication:

Nov.15, 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.