Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Decentralised coordination of mobile robots for target tracking with learnt utility models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhe Xu ; Australian Centre for Field Robot. (ACFR), Univ. of Sydney, Sydney, NSW, Australia ; Fitch, R. ; Sukkarieh, S.

This paper addresses the coordination of a decentralised robot team for target tracking. In many approaches to coordination, robots jointly plan their actions through negotiation, which incurs communication costs. Previous work examined the use of learning to reduce the need for negotiations in a network of static robots. Robots incrementally learn how each team member impacts the team utility and can thus make coordinated, team-wide decisions. In this paper, we extend the concept of learning utility models to a team of mobile robots. We also propose a mechanism by which robots switch between negotiating and using the learnt model. This mechanism reduces the communications required for coordination whilst maintaining the same level of tracking performance. Hardware experiments demonstrated that our approach resulted in coordinated behaviours while only negotiating intermittently. Simulation results show that our approach reduced the data communicated for negotiations by up to 70%, without making a statistically significant impact on the tracking performance.

Published in:

Robotics and Automation (ICRA), 2013 IEEE International Conference on

Date of Conference:

6-10 May 2013