By Topic

Advanced graphics behind medical virtual reality: evolution of algorithms, hardware, and software interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soferman, Z. ; Silicon Graphics Biomed. Ltd., Jerusalem, Israel ; Blythe, D. ; John, N.

Applications of virtual reality (VR) and augmented reality (AR) in medicine require real-time visualization and modeling of large three-dimensional data sets. Consequently, these applications require powerful computation, extensive high-bandwidth memory, and fast communication links. In the past, the manufacturers of medical imaging equipment produced their own special-purpose proprietary hardware for image processing and solid graphics. Due to the developments in computer hardware in general and in graphics accelerators in particular, there is a trend toward replacing the proprietary hardware off-the-shelf (OTS) equipment. Computer graphics itself has advanced in its quest for realism. Generic algorithms such as shading, texture mapping, and volume rendering have been developed to meet the resultant ever increasing requirements. Advances in both the OTS CPU and graphics hardware have enabled real-time implementations of these algorithms, thereby facilitating many of the medical VR/AR applications used today. The development of graphics libraries such as OpenGL has also been an important factor. These libraries provide an underlying portable software platform that optimizes the utilization of the available graphics hardware. OpenGL has become a standard graphics application programming interface, particularly for graphics-intensive applications, and more and more OTS systems provide hardware implementations of OpenGL commands. The review paper follows the evolution of these technologies and examines their crucial role in enabling the appearance of the current VR/AR applications in medicine and provides a look at current trends and future possibilities

Published in:

Proceedings of the IEEE  (Volume:86 ,  Issue: 3 )