Cart (Loading....) | Create Account
Close category search window

The unified power quality conditioner: the integration of series and shunt-active filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fujita, H. ; Dept. of Electr. Eng., Okayama Univ., Japan ; Akagi, H.

This paper deals with unified power quality conditioners (UPQCs), which aim at the integration of series-active and shunt-active power filters. The main purpose of a UPQC is to compensate for voltage flicker/imbalance, reactive power, negative-sequence current and harmonics. In other words, the UPQC has the capability of improving power quality at the point of installation on power distribution systems or industrial power systems. This paper discusses the control strategy of the UPQC, with a focus on the how of instantaneous active and reactive powers inside the UPQC. Experimental results obtained from a laboratory model of 20 kVA, along with a theoretical analysis, are shown to verify the viability and effectiveness of the UPQC

Published in:

Power Electronics, IEEE Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

Mar 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.