Cart (Loading....) | Create Account
Close category search window

Stimulated Brillouin Scattering Suppression With a Chirped Laser Seed: Comparison of Dynamical Model to Experimental Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Petersen, E. ; U.S. Army Res. Lab., Adelphi, MD, USA ; Zhi Yi Yang ; Satyan, N. ; Vasilyev, A.
more authors

A numerical model is developed to simulate stimulated Brillouin scattering (SBS) in high power single-mode fiber amplifiers. The time dependent model incorporates both laser and Stokes wave amplification and initiates the Brillouin scattering from thermal phonons. A frequency chirped laser is used as the seed to suppress SBS. Experiments with Yb-doped fiber amplifiers show good agreement with the modeling. Using experimentally determined parameters, the model is used to predict chirp requirements for multi-kilowatt amplifiers with tens of meters of delivery fiber. A comparison is made between a chirped seed source and random phase modulation for SBS suppression.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.