By Topic

Dynamic Deformation Analysis of Power Transformer Windings in Short-Circuit Fault by FEM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Haijun Zhang ; State Key Lab. of Electr. Insulation & Power Equip., Xi'an Jiaotong Univ., Xi'an, China ; Bin Yang ; Weijie Xu ; Shuhong Wang
more authors

This paper presents the investigations of short-circuit current, electromagnetic force, and transient dynamic response of windings deformation including mechanical stress, strain, and displacements for an oil-immersed-type 220-kV power transformer. The worst-case fault with three-phase short-circuit happening simultaneously is assumed. A considerable leakage magnetic field excited by short-circuit current can produce the dynamical electromagnetic force to act on copper disks in each winding. The two-dimensional finite element method (FEM) is employed to obtain the electromagnetic force and its dynamical characteristics in axial and radial directions. In addition, to calculate the windings deformation accurately, we measured the nonlinear elasticity characteristic of spacer and built three-dimensional FE kinetic model to analyze the axial dynamic deformation. The results of dynamic mechanical stress and strain induced by combining of short-circuit force and prestress are useful for transformer design and fault diagnosis.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:24 ,  Issue: 3 )