By Topic

Lateral SCR devices with low-voltage high-current triggering characteristics for output ESD protection in submicron CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ming-Dou Ker ; VLSI Design Div., Ind. Technol. Res. Inst., Hsinchu, Taiwan

A high-current PMOS-trigger lateral SCR (HIPTSCR) device and a high-current NMOS-trigger lateral SCR (HINTSCR) device with a lower trigger voltage but a higher trigger current are proposed to improve ESD robustness of CMOS output buffer in submicron CMOS technology. The lower trigger voltage is achieved by inserting short-channel thin-oxide PMOS or NMOS devices into the lateral SCR structures. The higher trigger current is achieved by inserting the bypass diodes into the structures of the HIPTSCR and HINTSCR devices. These HIPTSCR and HINTSCR devices have a lower trigger voltage to effectively protect the output transistors in the ESD-stress conditions, but they also have a higher trigger current to avoid the unexpected triggering due to the electrical noise on the output pad when the CMOS ICs are in the normal operating conditions. Experimental results have verified that the trigger current of the proposed HIPTSCR (HINTSCR) is increased up to 225.5 mA (218.5 mA). But, the trigger voltage of the HIPTSCR (HINTSCR) remains at a lower value of 13.4 V (11.6 V). The noise margin against the overshooting (undershooting) voltage pulse on the output pad, without accidentally triggering on the HINTSCR (HIPTSCR), can be greater than VDD+12 V (VSS -12 V). These HIPTSCR and HINTSCR devices have been practically used to protect CMOS output buffers with a 4000-V (700-V) HEM (MM) ESD robustness but only within a small layout area of 37.6×60 μm2 in a standard 0.6-μm CMOS technology without extra process modification

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 4 )