By Topic

Graph-based retrieval of PET-CT images using vector space embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumar, A. ; Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; Jinman Kim ; Dagan Feng ; Fulham, M.

Graph-based content-based image retrieval (CBIR) techniques, which use graphs to represent image features and calculate image similarity using the graph edit distance, achieve high retrieval accuracy. However, such techniques suffer from high computational complexity. In this paper, we present a graph-based CBIR algorithm that achieves improved retrieval efficiency. We compute a vector space embedding for every graph, using their distances from a set of prototype graphs, so that each vector component represents a distortion from a prototype. This process is performed offline. We compare images by computing the Euclidean distance of the vector embeddings, which is a faster process than calculating the graph edit distance. We evaluated our work using 50 combined positron emission tomography and computed tomography (PET-CT) volumes of patients with lung tumours. Our results show that our method is at least 21 times faster than the graph edit distance with a mean average precision difference of less than 4%.

Published in:

Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on

Date of Conference:

20-22 June 2013