By Topic

Verification of electron distributions in silicon by means of hot carrier luminescence measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
L. Selmi ; Dipt. di Elettronica, Inf. e Sistemistica, Bologna Univ., Italy ; M. Mastrapasqua ; D. M. Boulin ; J. D. Bude
more authors

This paper investigates the use of hot carrier luminescence (HCL) measurements as a mean for the verification of carrier energy distribution functions in submicron silicon devices subject to high electric fields. To this purpose, physically-based two-dimensional (2-D) simulations of the spectral distribution of HCL are compared with extensive experimental data on special purpose n+/n/n+ test structures that demonstrate lateral field profiles similar to real MOSFETs without the obscuring effects of a gate electrode. Good agreement between measured and simulated data is observed over wide channel length, bias, and temperature ranges, thus providing for the first time a direct verification of simulated electron energy distributions in a MOSFET-like environment

Published in:

IEEE Transactions on Electron Devices  (Volume:45 ,  Issue: 4 )