By Topic

A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yen, J. ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Liao, J.C. ; Lee, B. ; Randolph, D.

One of the main obstacles in applying genetic algorithms (GA's) to complex problems has been the high computational cost due to their slow convergence rate. We encountered such a difficulty in our attempt to use the classical GA for estimating parameters of a metabolic model. To alleviate this difficulty, we developed a hybrid approach that combines a GA with a stochastic variant of the simplex method in function optimization. Our motivation for developing the stochastic simplex method is to introduce a cost-effective exploration component into the conventional simplex method. In an attempt to make effective use of the simplex operation in a hybrid GA framework, we used an elite-based hybrid architecture that applies one simplex step to a top portion of the ranked population. We compared our approach with five alternative optimization techniques including a simplex-GA hybrid independently developed by Renders-Bersini (R-B) and adaptive simulated annealing (ASA). Our empirical evaluations showed that our hybrid approach for the metabolic modeling problem outperformed all other techniques in terms of accuracy and convergence rate. We used two additional function optimization problems to compare our approach with the five alternative methods

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:28 ,  Issue: 2 )