By Topic

A parallel fuzzy inference model with distributed prediction scheme for reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yau-Hwang Kuo ; Inst. of Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Jang-Pong Hsu ; Cheng-Wen Wang

This paper proposes a three-layered parallel fuzzy inference model called reinforcement fuzzy neural network with distributed prediction scheme (RFNN-DPS), which performs reinforcement learning with a novel distributed prediction scheme. In RFNN-DPS, an additional predictor for predicting the external reinforcement signal is not necessary, and the internal reinforcement information is distributed into fuzzy rules (rule nodes). Therefore, using RFNN-DPS, only one network is needed to construct a fuzzy logic system with the abilities of parallel inference and reinforcement learning. Basically, the information for prediction in RFNN-DPS is composed of credit values stored in fuzzy rule nodes, where each node holds a credit vector to represent the reliability of the corresponding fuzzy rule. The credit values are not only accessed for predicting external reinforcement signals, but also provide a more profitable internal reinforcement signal to each fuzzy rule itself. RFNN-DPS performs a credit-based exploratory algorithm to adjust its internal status according to the internal reinforcement signal. During learning, the RFNN-DPS network is constructed by a single-step or multistep reinforcement learning algorithm based on the ART concept. According to our experimental results, RFNN-DPS shows the advantages of simple network structure, fast learning speed, and explicit representation of rule reliability

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:28 ,  Issue: 2 )