By Topic

Electromagnetic scattering by multiple three-dimensional scatterers buried under multilayered media. I. Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cui, Tie Jun ; Inst. fur Hochstfrequenztech. & Electron., Karlsruhe Univ., Germany ; Wiesbeck, W. ; Herschlein, A.

A general procedure is developed for the analysis of electromagnetic (EM) scattering by multiple three-dimensional (3D) dielectric and/or conducting objects buried under one-dimensional (1D) multilayered media. In this first part of a two-part paper, general closed-form formulations for the electric fields excited by an arbitrarily oriented electric dipole under the layered media are first presented, from which electric-field integral equations for the buried dielectric objects, pure conducting objects, and their combinations are then obtained, and the scattered electric fields in the upper space are formulated. Finally, the physical significance of the above formulations is discussed. In the second part, numerical implementations for these integral equations and the scattered fields are investigated

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:36 ,  Issue: 2 )