By Topic

Theoretical studies and experimental results of a SMES used in a pulsed current supply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Netter, D. ; Groupe de Recherche en Electrotech., Univ. Henri Poincare, Paris, France ; Leveque, J. ; Rezzoug, A. ; Caron, J.-P.
more authors

A superconducting magnet energy storage (SMES) can be used as a pulsed power supply. A superconducting coil stores energy without electrical losses and this energy can be recovered through a second wire on which the charge (electromagnetic launcher, for example) is linked. The design of such an apparatus needs to solve simultaneously thermal, magnetic, and electric equations. We proposed a three-dimensional finite difference method to solve these coupled problems. This tool enables us to describe resistive zones of expansion in thick coils during a quench and to predict the duration and the efficiency of the discharge. Moreover, it indicates if the coil is prevented from an excessive temperature increase. Then, a probative device is described and experimental results are compared with theoretical ones.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:8 ,  Issue: 1 )