By Topic

Delay abstraction in combinational logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kobayashi, N. ; C&C Media Res. Labs., NEC Corp., Kawasaki, Japan ; Malik, S.

In this paper we propose a data structure for abstracting the delay information of a combinatorial circuit. The particular abstraction that we are interested in is one that preserves the delays between all pairs of inputs and outputs in the circuit. Such abstractions are useful when considering the delay of cascaded circuits in high-level synthesis and other such applications in synthesis. The proposed graphical data structure is called the concise delay network, and is of size proportional to (m+n) in best case, where m and n refer to the number of inputs and outputs of the circuit. In comparison, a delay matrix that stores the maximum delay between each input-output pair has size proportional to m×n. For circuits with hundreds of inputs and outputs, this storage and the associated computations become quite expensive, especially when they need to be done repeatedly during synthesis. We present heuristic algorithms for deriving these concise delay networks. Experimental results shows that, in practice, we can obtain concise delay network with the number of edges being a small multiple of (m+n)

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 10 )