By Topic

Optimized terminal current calculation for Monte Carlo device simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yoder, P.D. ; Integrated Syst. Lab., Fed. Inst. of Technol., Zurich, Switzerland ; Gartner, K. ; Krumbein, Ulrich ; Fichtner, Wolfgang

We present a generalized Ramo-Shockley theorem (GRST) for the calculation of time-dependent terminal currents in multidimensional charge transport calculations and simulations. While analytically equivalent to existing boundary integration methods, this new domain integration technique is less sensitive to numerical error introduced by calculations of finite precision. Most significantly, we derive entirely new optimized formulas for the ensemble Monte Carlo estimation of steady-state terminal currents from the time-independent form of our GRST, which are in general not equivalent to the time-average of the true time-dependent terminal currents. We then demonstrate, both analytically and by means of example, how our new variance-minimizing terminal current estimators may be exploited to improve estimator accuracy in comparison to existing methods

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 10 )