By Topic

A precorrected-FFT method for electrostatic analysis of complicated 3-D structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Phillips, J.R. ; Res. Lab. of Electron., MIT, Cambridge, MA, USA ; White, J.K.

In this paper we present a new algorithm for accelerating the potential calculation which occurs in the inner loop of iterative algorithms for solving electromagnetic boundary integral equations. Such integral equations arise, for example, in the extraction of coupling capacitances in three-dimensional (3-D) geometries. We present extensive experimental comparisons with the capacitance extraction code FASTCAP and demonstrate that, for a wide variety of geometries commonly encountered in integrated circuit packaging, on-chip interconnect and micro-electro-mechanical systems, the new “precorrected-FFT” algorithm is superior to the fast multipole algorithm used in FASTCAP in terms of execution time and memory use. At engineering accuracies, in terms of a speed-memory product, the new algorithm can be superior to the fast multipole based schemes by more than an order of magnitude

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 10 )