By Topic

Design and Characterization of a 2-DOF MEMS Ultrasonic Energy Harvester With Triangular Electrostatic Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fowler, A.G. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW, Australia ; Moheimani, S.O.R. ; Behrens, S.

This letter presents a microelectromechanical systems (MEMS) based energy harvester designed for applications such as the powering of implanted biomedical devices. The harvester is mechanically excited by an external source of ultrasonic waves with triangular electrostatic electrodes being used to produce electrical power from the vibrations of the system's proof mass. Comparisons are made with a previous MEMS harvester that uses conventional comb-finger electrostatic electrodes to demonstrate that the triangular electrodes result in a more effective conversion process. Experimental characterization shows that the device produces an average power output of 27.6 nW, which corresponds to a 29% increase in power output over the conventional comb-finger device.

Published in:

Electron Device Letters, IEEE  (Volume:34 ,  Issue: 11 )