Cart (Loading....) | Create Account
Close category search window

On simultaneous min-entropy smoothing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Drescher, L. ; Inst. for Theor. Phys., ETH Zuerich, Zuerich, Switzerland ; Fawzi, O.

In the context of network information theory, one often needs a multiparty probability distribution to be typical in several ways simultaneously. When considering quantum states instead of classical ones, it is in general difficult to prove the existence of a state that is jointly typical. Such a difficulty was recently emphasized and conjectures on the existence of such states were formulated. In this paper, we consider a one-shot multiparty typicality conjecture. The question can then be stated easily: is it possible to smooth the largest eigenvalues of all the marginals of a multipartite state ρ simultaneously while staying close to ρ? We prove the answer is yes whenever the marginals of the state commute. In the general quantum case, we prove that simultaneous smoothing is possible if the number of parties is two or more generally if the marginals to optimize satisfy some non-overlap property.

Published in:

Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on

Date of Conference:

7-12 July 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.