Cart (Loading....) | Create Account
Close category search window
 

A 1024 ,\times, 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Maruyama, Y. ; Delft Univ. of Technol., Delft, Netherlands ; Blacksberg, J. ; Charbon, E.

A 1024 × 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and median dark count rate of 80 Hz at 3 V of excess bias. A type-II sensor offers a maximum photon detection efficiency of 19.3% and a median dark count rate of 5.7 kHz at 3 V of excess bias. Both chips have 250-ps temporal resolution and fast gating capability, with a minimum gate width of 1.8 ns for type I and 0.7 ns for type II. Raman spectra were successfully observed from natural minerals, such as calcite and willemite. With the use of subnanosecond gating, background fluorescence was significantly reduced.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.