Cart (Loading....) | Create Account
Close category search window
 

Rice Biomass Estimation Using Radar Backscattering Data at S-band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mingquan Jia ; Sch. of Autom., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Ling Tong ; Yuanzhi Zhang ; Yan Chen

This paper presents an inversion method based on neural networks (NN) to estimate rice biomass in a paddy rice field with fully polarimetric (HH, HV, VH, VV) measurements at S-band. The backscattering coefficients are measured by a ground-based scatterometer system during the rice growth period from May to September 2010. The rice growth parameters including biomass, leaf-area index (LAI) and canopy structure are collected by random sampling at the same time. Data analyses show that the multi-temporal backscattering coefficients are very sensitive to the changes of biomass, LAI, canopy height and stem density. We also find that multi-temporal observations are suitable for paddy detection in the early growth period, and co-polarimetric observations perform well for monitoring rice status in the late growth period. According to the field measurements, a rice growth model was established as the function of rice age. The model made the parameters more representative and universal than limited random measurements over a given rice field. The scatter model of rice fields was simulated based on Monte Carlo simulations. The input parameters in the scatter model were generated by the rice growth model. The simulation results of the scatter model were composed as the NN training dataset, which was used for training and accessing the NN inversion algorithm. Two NN models, a simple training model (STM) and a related training model (RTM), were applied to estimate rice biomass. The obtained results show that the root mean square error (RMSE = 0.816 Kg/m2) of the RTM is better than that of the STM (RMSE = 1.226 kg/m2). The results suggest that the inversion model is able to estimate rice biomass with radar backscattering coefficients at S-band.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.