By Topic

Relating Things and Stuff via ObjectProperty Interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Min Sun ; AC101 Paul G. Allen Center, Univ. of Washington, Seattle, WA, USA ; Byung-soo Kim ; Kohli, P. ; Savarese, S.

In the last few years, substantially different approaches have been adopted for segmenting and detecting “things” (object categories that have a well defined shape such as people and cars) and “stuff” (object categories which have an amorphous spatial extent such as grass and sky). While things have been typically detected by sliding window or Hough transform based methods, detection of stuff is generally formulated as a pixel or segment-wise classification problem. This paper proposes a framework for scene understanding that models both things and stuff using a common representation while preserving their distinct nature by using a property list. This representation allows us to enforce sophisticated geometric and semantic relationships between thing and stuff categories via property interactions in a single graphical model. We use the latest advances made in the field of discrete optimization to efficiently perform maximum a posteriori (MAP) inference in this model. We evaluate our method on the Stanford dataset by comparing it against state-of-the-art methods for object segmentation and detection. We also show that our method achieves competitive performances on the challenging PASCAL '09 segmentation dataset.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 7 )