By Topic

Regularized autoregressive models for a spectral estimation scheme dedicated to medical ultrasonic radio-frequency images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The local spectral estimation from radio-frequency (RF) signals in medical echographic ultrasound images is not a trivial task due to the noisy nature of the data resulting from a stochastic and nonstationary process, Significant improvements may be obtained by proposing a spatial regularization scheme, smoothing the local spectral estimates while preserving the discontinuities. Based on AR models, the authors propose a 2D regularization scheme in a Bayesian framework. The a-priori knowledge is expressed by means of Markovian Random Fields (MRF) defined on the reflection coefficients. The use of nonquadratic functions allows to preserve discontinuities. First the authors applied their method on simulated data containing spatial discontinuities of spectral characteristics, which showed the efficiency of the regularization technique. Then the technique was used on cardiac RF data. This shows the improvements as well for Integrated Backscatter (IBS) images as for Mean Central Frequency (MCF) Images or whole spectral estimation

Published in:

Ultrasonics Symposium, 1997. Proceedings., 1997 IEEE  (Volume:2 )

Date of Conference:

5-8 Oct 1997