By Topic

A Class of Quaternion Kalman Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jahanchahi, C. ; Commun. & Signal Process. Res. Group, Imperial Coll. London, London, UK ; Mandic, D.P.

The existing Kalman filters for quaternion-valued signals do not operate fully in the quaternion domain, and are combined with the real Kalman filter to enable the tracking in 3-D spaces. Using the recently introduced HR-calculus, we develop the fully quaternion-valued Kalman filter (QKF) and quaternion-extended Kalman filter (QEKF), allowing for the tracking of 3-D and 4-D signals directly in the quaternion domain. To consider the second-order noncircularity of signals, we employ the recently developed augmented quaternion statistics to derive the widely linear QKF (WL-QKF) and widely linear QEKF (WL-QEKF). To reduce computational requirements of the widely linear algorithms, their efficient implementation are proposed and it is shown that the quaternion widely linear model can be simplified when processing 3-D data, further reducing the computational requirements. Simulations using both synthetic and real-world circular and noncircular signals illustrate the advantages offered by widely linear over strictly linear quaternion Kalman filters.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:25 ,  Issue: 3 )