By Topic

Feasibility Study of an Axially Extendable Multiplex Cylinder PET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Eiji Yoshida ; National Institute of Radiological Sciences ; Yoshiyuki Hirano ; Hideaki Tashima ; Naoko Inadama
more authors

Current clinical PET scanners have a 15-22 cm axial field-of-view (FOV). These scanners image the whole body using six or more bed positions. We designed an axially extendable multiplex cylinder (AEMC) PET scanner to provide high versatility for clinical and research studies using semiconductor photo-sensor based, depth-of-interaction (DOI) detectors. Since silicon-photomultipliers (Si-PMs) have high gain like conventional photomultiplier tubes and a compact design, the Si-PM-based detector is particularly expected to enable various new detector arrangements. The AEMC-PET scanner consists of multiple independent and laminated detector rings using the DOI detectors. The AEMC-PET scanner can extend the axial FOV as each stacked detector ring can be slid sideways. When this PET scanner is used for the four-layer DOI detector, its minimum axial FOV is 24 cm and its maximum crystal thickness is 3 cm. On the other hand, the axial FOV can be extended to 96 cm when laminated detector rings are slid sideways, but the crystal thickness must be 1/4 of 3 cm. In this work, we evaluated performance characteristics of the PET scanner with a variable axial FOV using Monte Carlo simulation. From the simulation of the 180-cm line source, the 96-cm axial FOV was found to have two-fold better sensitivity compared to the 24-cm axial FOV. For extension of the axial FOV, scatter and attenuation of oblique lines-of-response reduced the yield of true coincidences, but effects of scatter and attenuation were small. Conclusive results were obtained showing the 52.8-cm axial FOV yielded an increase in the noise equivalent count rate of approximately 30% relative to the 24-cm axial FOV. We expect the designed AEMC-PET scanner will provide high versatility in applications such as for measuring whole-body tracer uptakes while keeping the continuous axial FOV; as well, the scan time for static images will be reduced for a comparable number of detectors as conventional PET scanners.

Published in:

IEEE Transactions on Nuclear Science  (Volume:60 ,  Issue: 5 )