By Topic

Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ran He ; Center for Res. on Intell. Perception & Comput., Inst. of Autom., Beijing, China ; Tieniu Tan ; Liang Wang

Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between ℓ1 regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust framework for low-rank matrix recovery via implicit regularizers of robust M-estimators, which are derived from convex conjugacy and can be used to model arbitrarily corrupted errors. Based on the additive form of half-quadratic optimization, proximity operators of implicit regularizers are developed such that both low-rank structure and corrupted errors can be alternately recovered. In particular, the dual relationship between the absolute function in ℓ1 regularizer and Huber M-estimator is studied, which establishes a connection between robust low-rank matrix recovery methods and M-estimators based robust principal component analysis methods. Extensive experiments on synthetic and real-world data sets corroborate our claims and verify the robustness of the proposed framework.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 4 )