By Topic

Robust Control for Urban Road Traffic Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tettamanti, T. ; Dept. of Control for Transp. & Vehicle Syst., Budapest Univ. of Technol. & Econ., Budapest, Hungary ; Luspay, T. ; Kulcsar, B. ; Peni, T.
more authors

The aim of the presented research is to elaborate a traffic-responsive optimal signal split algorithm taking uncertainty into account. The traffic control objective is to minimize the weighted link queue lengths within an urban network area. The control problem is formulated in a centralized rolling-horizon fashion in which unknown but bounded demand and queue uncertainty influences the prediction. An efficient constrained minimax optimization is suggested to obtain the green time combination, which minimizes the objective function when worst case uncertainty appears. As an illustrative example, a simulation study is carried out to demonstrate the effectiveness and computational feasibility of the robust predictive approach. By using real-world traffic data and microscopic traffic simulator, the proposed robust signal split algorithm is analyzed and compared with well-tuned fixed-time signal timing and to nominal predictive solutions under different traffic conditions.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )