Cart (Loading....) | Create Account
Close category search window
 

Computer simplification of formulas in linear systems theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Helton, J.W. ; Dept. of Math., California Univ., San Diego, La Jolla, CA, USA ; Stankus, M. ; Wavrik, J.J.

Currently, the three most popular commercial computer algebra systems are Mathematica, Maple, and MACSYMA. These systems provide a wide variety of symbolic computation facilities for commutative algebra and contain implementations of powerful algorithms in that domain. The Grobner basis algorithm, for example, is an important tool used in computation with commutative algebras and in solving systems of polynomial equations. On the other hand, most of the computation involved in linear control theory is performed on matrices, which do not commute, and Mathematica, Maple, and MACSYMA are weak in the area of noncommutative operations. The paper reports on applications of a powerful tool, a noncommutative version of the Grobner basis algorithm. The commutative version of this algorithm is implemented in most major computer algebra packages. The noncommutative version is relatively new

Published in:

Automatic Control, IEEE Transactions on  (Volume:43 ,  Issue: 3 )

Date of Publication:

Mar 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.