By Topic

Control Techniques for Increasing the Scan Speed and Minimizing Image Artifacts in Tapping-Mode Atomic Force Microscopy: Toward Video-Rate Nanoscale Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fairbairn, M.W. ; Lab. for Dynamics & Control of Nanosyst., Univ. of Newcastle, Newcastle, NSW, Australia ; Moheimani, S.O.R.

The atomic force microscope (AFM) [1] is a mechanical microscope capable of producing three-dimensional images of a wide variety of sample surfaces with nanometer precision in air, vacuum, or liquid environments. This article provides an overview of the AFM and its three main modes of operation, with a focus on the tapping mode of operation. The challenges associated with obtaining high-speed images with a tapping-mode AFM while minimizing image artifacts are outlined and control techniques that have been developed to overcome these challenges are reviewed.

Published in:

Control Systems, IEEE  (Volume:33 ,  Issue: 6 )