By Topic

Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tsai, Chin-Yi ; Dept. of Electron. & Electr. Eng., De Monfort Univ., Leicester, UK ; Tsai, Chin-Yao ; Chen, Chih-Hsiung ; Sung, Tien-Li
more authors

Free-carrier absorption is calculated from the second-order perturbation theory of quantum mechanics by considering the interactions between carriers and polar optical phonons, deformation potential optical phonons, deformation potential acoustic phonons, piezoelectric acoustic phonons, and charged impurities in the intravalley transition and the intervalley transition. A formula is derived from our theoretical model for the coefficient of free-carrier absorption by incorporating the state-filling effect and the degenerate carrier distribution. Our results indicate that the classical Drude model is inadequate to describe many features of the free-carrier absorption. Alternatively, our theoretical model may provide an efficient method for investigating the effect of free-carrier absorption on the functionality or performance of the related optoelectronic device

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 3 )