By Topic

Threshold currents of 1.3-μm bulk, 1.55-μm bulk, and 1.55-μm MQW DFB P-substrate partially inverted buried heterostructure laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kakimoto, Syouichi ; Optoelectron. & Microwave Devices Lab., Mitsubishi Electron. Corp., Hyogo, Japan ; Watanabe, H.

We investigate the threshold currents of 1.3-μm bulk, 1.55-μm bulk, and 1.55-μm multi-quantum-well (MQW) distributed feedback (DFB) P-substrate partially inverted buried heterostructure (BH) laser diodes experimentally and theoretically. In spite of the larger internal loss of the 1.55-μm bulk laser diodes, the threshold current of the 1.55-μm bulk DFB P-substrate partially inverted BH laser diode is almost the same as that of the 1.3-μm bulk DFB P-substrate partially inverted BH laser diode. The experimentally obtained average threshold current of the 1.3-μm bulk DFB P-substrate partially inverted BH laser diodes is 17 mA and that of the 1.55 μm bulk DFB P-substrate partially inverted BH laser diodes is 16 mA. The calculated threshold current of the 1.3-μm bulk DFB laser diode is 15.3 mA and that of the 1.55-μm bulk DFB laser diode is 18.3 mA, which nearly agree with the calculated values, respectively. We have fabricated two types of five-well 1.55-μm InGaAs-InGaAsP MQW DFB P-substrate partially inverted BH laser diodes. One has barriers whose bandgap energy corresponds to 1.3 μm, and the other has barriers of which bandgap energy corresponds to 1.15 μm. The calculated threshold current of the MQW DFB laser diode with the barriers (λg =1.3 μm) is 8.5 mA, which nearly agrees with the experimentally obtained value of 10 mA. However, the calculated threshold current of the MQW DFB laser diode with the barriers (λg=1.15 μm) is 7.9 mA which greatly disagrees with the experimentally obtained value of 19 mA, which suggests that the valence band discontinuity between the well and the barrier severely prevents the uniform distribution of the injected holes among five wells

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 3 )