By Topic

Optimal shape design of an electrostatic comb drive in microelectromechanical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenjing Ye ; Dept. of Theor. & Appl. Mech., Cornell Univ., Ithaca, NY, USA ; Mukherjee, S. ; MacDonald, Noel C.

Polynomial driving-force comb drives are synthesized using numerical simulation. The electrode shapes are obtained using the indirect boundary element method. Variable-gap comb drives that produce combinations of linear, quadratic, and cubic driving-force profiles are synthesized. This inverse problem is solved by an optimization procedure. Sensitivity analysis is carried out by the direct differentiation approach (DDA) in order to compute design sensitivity coefficients (DSCs) of force profiles with respect to parameters that define the shapes of the fingers of a comb drive. The DSCs are then used to drive iterative optimization procedures. Designs of variable-gap comb drives with linear, quadratic, and cubic driving force profiles are presented in this paper

Published in:

Microelectromechanical Systems, Journal of  (Volume:7 ,  Issue: 1 )