By Topic

On Bilateral Teleoperation of Aerial Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mersha, A.Y. ; Dept. of Electr. Eng., Univ. of Twente, Enschede, Netherlands ; Stramigioli, S. ; Carloni, R.

This paper presents a generic hierarchical passive teleoperation control architecture that effectively addresses the issues of workspace incompatibility and precision, as well as other classical and peculiar challenges. More specifically, the control scheme consists of a user-defined variable scale mapping, a variable impedance master controller, and a virtual slave system. The port-based modeling framework has been extensively used in our formulation, providing more insight about energetic flows in the system that are particularly useful for the design of a passive controlled system. Moreover, various practical considerations that are required for the effective usage of the control architecture are discussed. The achieved better precision and overall task performance have been validated and verified by elaborate simulations and experiments.

Published in:

Robotics, IEEE Transactions on  (Volume:30 ,  Issue: 1 )