By Topic

Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Marco Dalai ; Dept. of Inf. Eng., Univ. of Brescia, Brescia, Italy

In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: 1) extending classical bounds of Shannon to classical-quantum channels, and 2) proposing a new framework for lower bounding the probability of error of channels with a zero-error capacity in the low rate region. The relation between these two problems is revealed by showing that Lovász' bound on zero-error capacity emerges as a natural consequence of the sphere packing bound once we move to the more general context of classical-quantum channels. A variation of Lovász' bound is then derived to lower bound the probability of error in the low rate region by means of auxiliary channels. As a result of this study, connections between the Lovász theta function, the expurgated bound of Gallager, the cutoff rate of a classical channel, and the sphere packing bound for classical-quantum channels are established.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 12 )