By Topic

Efficient semisystolic architectures for finite-field arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jain, S.K. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Leilei Song ; Parhi, K.K.

Finite fields have been used for numerous applications including error-control coding and cryptography. The design of efficient multipliers, dividers, and exponentiators for finite field arithmetic is of great practical concern. In this paper, we explore and classify algorithms for finite field multiplication, squaring, and exponentiation into least significant bit first (LSB-first) scheme and most significant bit first (MSB-first) scheme, and implement these algorithms using semisystolic arrays. For finite field multiplication (for programmable as well as fixed field order) and exponentiation, we conclude that LSB-first algorithms are more efficient as their basic cells have less critical path computation time. Another advantage of LSB-first scheme is its capability of achieving substructure sharing among multiple operations, which could lead to savings in hardware when these arithmetic units are used as building blocks for a large system. For finite field squaring operation, it turns out that the MSB-first algorithm is more efficient as it leads to simpler architectures. Bit-level pipelined semisystolic architectures utilize broadcast signals. As a result, these require much less number of latches and lead to much smaller latency than the corresponding systolic array, with the same cycle time (the computation time in one basic cell). Efficient VLSI implementation of semisystolic multipliers, squarers and exponentiators are designed and compared with existing architectures. A novel architecture for computing AB/sup n/+C using power representation is also presented.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )