By Topic

A mixed-signal array processor with early vision applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. A. Martin ; Texas Instrum. New Jersey Design Center, Edison, NJ., USA ; Hae-Seung Lee ; I. Masaki

Many early vision tasks require only 6 to 8 b of precision. For these applications, a special-purpose analog circuit is often a smaller, faster, and lower power solution than a general-purpose digital processor, but the analog chips lack the programmability of digital image processors. This paper presents a programmable mixed-signal array processor which combines the programmability of a digital processor with the small area and low power of an analog circuit. Each processor cell in the array utilizes a digitally programmable analog arithmetic unit with an accuracy of 1.3%. The analog arithmetic unit utilizes a unique circuit that combines a cyclic switched-capacitor analog-to-digital converter (ADC) and digital-to-analog converter (DAC) to perform addition, subtraction, multiplication, and division, Each processor cell, fabricated in a 0.8-μm triple-metal CMOS process, operates at a speed of 0.8 MIPS, consumes 1.8 mW of power at 5 V, and uses 700 μm by 270 μm of silicon area. An array of these processor cells performed an edge detection algorithm and a subpixel resolution algorithm

Published in:

IEEE Journal of Solid-State Circuits  (Volume:33 ,  Issue: 3 )