Cart (Loading....) | Create Account
Close category search window

Automated low-power technique exploiting multiple supply voltages applied to a media processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Usami, K. ; Toshiba Corp., Kawasaki, Japan ; Igarashi, M. ; Minami, F. ; Ishikawa, T.
more authors

This paper describes an automated design technique to reduce power by making use of two supply voltages. The technique consists of structure synthesis, placement, and routing. The structure synthesizer clusters the gates off the critical paths so as to supply the reduced voltage to save power. The placement and routing tool assigns either the reduced voltage or the unreduced one to each row so as to minimize the area overhead. The reduced supply, voltage is also exploited in a clock tree to reduce power. Combining these techniques together, we applied it to a media processor chip. The combined technique reduced the power by 47% in random-logic modules and by 73% in the clock tree, while keeping the performance

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:33 ,  Issue: 3 )

Date of Publication:

Mar 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.