By Topic

Total variation blind deconvolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, T.F. ; Dept. of Math., California Univ., Los Angeles, CA, USA ; Chiu-Kwong Wong

We present a blind deconvolution algorithm based on the total variational (TV) minimization method proposed by Acar and Vogel (1994). The motivation for regularizing with the TV norm is that it is extremely effective for recovering edges of images as well as some blurring functions, e.g., motion blur and out-of-focus blur. An alternating minimization (AM) implicit iterative scheme is devised to recover the image and simultaneously identify the point spread function (PSF). Numerical results indicate that the iterative scheme is quite robust, converges very fast (especially for discontinuous blur), and both the image and the PSF can be recovered under the presence of high noise level. Finally, we remark that PSFs without sharp edges, e.g., Gaussian blur, can also be identified through the TV approach

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 3 )