By Topic

Analysis, design, and iterative decoding of double serially concatenated codes with interleavers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benedetto, S. ; Dipt. di Elettronica, Politecnico di Torino, Italy ; Divsalar, D. ; Montorsi, G. ; Pollara, F.

A double serially concatenated code with two interleavers consists of the cascade of an outer encoder, an interleaver permuting the outer codeword bits, a middle encoder, another interleaver permuting the middle codeword bits, and an inner encoder whose input words are the permuted middle codewords. The construction can be generalized to h cascaded encoders separated by h-1 interleavers, where h>3. We obtain upper bounds to the average maximum likelihood bit-error probability of double serially concatenated block and convolutional coding schemes. Then, we derive design guidelines for the outer, middle, and inner codes that maximize the interleaver gain and the asymptotic slope of the error probability curves. Finally, we propose a low-complexity iterative decoding algorithm. Comparisons with parallel concatenated convolutional codes, known as “turbo codes”, and with the proposed serially concatenated convolutional codes are also presented, showing that in some cases, the new schemes offer better performance

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:16 ,  Issue: 2 )