By Topic

Iterative decoding of compound codes by probability propagation in graphical models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kschischang, F.R. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Frey, B.J.

We present a unified graphical model framework for describing compound codes and deriving iterative decoding algorithms. After reviewing a variety of graphical models (Markov random fields, Tanner graphs, and Bayesian networks), we derive a general distributed marginalization algorithm for functions described by factor graphs. From this general algorithm, Pearl's (1986) belief propagation algorithm is easily derived as a special case. We point out that iterative decoding algorithms for various codes, including “turbo decoding” of parallel-concatenated convolutional codes, may be viewed as probability propagation in a graphical model of the code. We focus on Bayesian network descriptions of codes, which give a natural input/state/output/channel description of a code and channel, and we indicate how iterative decoders can be developed for parallel-and serially concatenated coding systems, product codes, and low-density parity-check codes

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:16 ,  Issue: 2 )