By Topic

Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schoukens, Johan ; Dept. ELEC., Vrije Univ., Brussels, Belgium ; Dobrowiecki, T. ; Pintelon, R.

This paper studies the asymptotic behavior of nonparametric and parametric frequency domain identification methods to model linear dynamic systems in the presence of nonlinear distortions under some general conditions for random multisine excitations. In the first part, a related linear dynamic system (RLDS) approximation to the nonlinear system (NLS) is defined, and it is shown that the differences between the NLS and the RLDS can be modeled as stochastic variables with known properties. In the second part a parametric model for the RLDS is identified. Convergence in probability of this model to the RLDS is proven. A function of dependency is defined to detect and separate the presence of unmodeled dynamics and nonlinear distortions and to bound the bias error on the transfer function estimate

Published in:

Automatic Control, IEEE Transactions on  (Volume:43 ,  Issue: 2 )