By Topic

A real-time traffic simulation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. T. Chronopoulos ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA ; C. M. Johnston

This article studies the usefulness of parallel processing in real-time traffic-flow simulation based on continuum modeling of traffic dynamics. Computational fluid dynamics (CFDs) methods for solving simple macroscopic traffic-flow continuum models have been studied and efficiently implemented in traffic simulation codes (on serial computers) in the past. We designed a traffic-flow simulation code and mapped it onto a parallel computer architecture. This traffic simulation system is capable of simulating freeway traffic flow in real time. Tests with real traffic data collected from the freeway network in the metropolitan area of Minneapolis, MN, were used to validate the accuracy and computational rate of the parallel simulation system. The execution time for a 2-h traffic-flow simulation of about 200 619 vehicles in an 18-mi freeway, which takes 2.35 min of computer time (on a single-processor computer simulator), took only 5.25 s on the parallel traffic simulation system. This parallel system has a lot of potential for real-time traffic engineering applications

Published in:

IEEE Transactions on Vehicular Technology  (Volume:47 ,  Issue: 1 )