By Topic

Optimal control theory for the design of optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. K. Pant ; Dept. of Chem., Pittsburgh Univ., PA, USA ; R. D. Coalson ; M. I. Hernandez ; J. Campos-Martinez

Techniques of optimal control theory, previously developed to assist in the design of ultrafast laser pulses for controlling laser-molecule interactions, are adapted to aid in the design of optical waveguides that can be modeled via the paraxial equation. Noting that the paraxial equation is isomorphic to the time-dependent Schrodinger equation, previous work focussing on control of quantum systems can be directly applied to the problem of waveguide design. Specific application is given to the design of S-bend waveguides. It is shown how optimal control theory yields an algorithm which can refine an initial guess for the index of refraction profile in order to minimize a cost function which reflects design goals. Numerical examples are presented to illustrate the utility and flexibility of the proposed technique

Published in:

Journal of Lightwave Technology  (Volume:16 ,  Issue: 2 )